Explicit formulas for efficient multiplication in F_{3^{6m}}
نویسندگان
چکیده
Abstract. Efficient computation of the Tate pairing is an important part of pairing-based cryptography. Recently with the introduction of the Duursma-Lee method special attention has been given to the fields of characteristic 3. Especially multiplication in F36m , where m is prime, is an important operation in the above method. In this paper we propose a new method to reduce the number of F3m -multiplications for multiplication in F36m from 18 in recent implementations to 15. The method is based on the fast Fourier transform and its explicit formulas are given. The execution times of our software implementations for F36m show the efficiency of our results.
منابع مشابه
On the structural properties for the cross product of fuzzy numbers with applications
In the fuzzy arithmetic, the definitions of addition and multiplication of fuzzy numbers are based on Zadeh’s extension principle. From theoretical and practical points of view, this multiplication of fuzzy numbers owns several unnatural properties. Recently, to avoid this shortcoming, a new multiplicative operation of product type is introduced, the so-called cross-product of fuzzy numbers. Th...
متن کاملEfficient Quintuple Formulas for Elliptic Curves and Efficient Scalar Multiplication Using Multibase Number Representation
In the current work we propose two efficient formulas for computing the 5-fold (5P ) of an elliptic curve point P . One formula is for curves over finite fields of even characteristic and the other is for curves over prime fields. Double base number systems (DBNS) have been gainfully exploited to compute scalar multiplication efficiently in ECC. Using the proposed point quintupling formulas one...
متن کاملSpeeding Up Ate Pairing Computation in Affine Coordinates
At Pairing 2010, Lauter et al’s analysis showed that Ate pairing computation in affine coordinates may be much faster than projective coordinates at high security levels. In this paper, we further investigate techniques to speed up Ate pairing computation in affine coordinates. On the one hand, we improve Ate pairing computation over elliptic curves admitting an even twist by describing an 4-ar...
متن کاملFaster Group Operations on Special Elliptic Curves
This paper is on efficient implementation techniques of Elliptic Curve Cryptography. We improve group operation timings for Hessian and Jacobi-intersection forms of elliptic curves. In this study, traditional coordinates of these forms are modified to speed up the addition operations. For the completeness of our study, we also recall the modified Jacobiquartic coordinates which benefits from si...
متن کاملComputing Isogenies Between Montgomery Curves Using the Action of (0, 0)
A recent paper by Costello and Hisil at Asiacrypt’17 presents efficient formulas for computing isogenies with odd-degree cyclic kernels on Montgomery curves. We provide a constructive proof of a generalization of this theorem which shows the connection between the shape of the isogeny and the simple action of the point (0, 0). This generalization removes the restriction of a cyclic kernel and a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0708.3014 شماره
صفحات -
تاریخ انتشار 2007